S-Glutathionylation Enhances HumanCystathionine Î2-Synthase Activity Under OxidativeStress Conditions

نویسندگان

  • Wei-Ning Niu
  • Pramod Kumar Yadav
  • Jiri Adamec
  • Ruma Banerjee
چکیده

Aims: Cystathionine b-synthase (CBS) catalyzes the first and rate-limiting step in the two-step trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of three major enzymes responsible for the biogenesis of H2S, a signaling molecule. We have previously demonstrated that CBS is activated in cells challenged by oxidative stress, but the underlying molecular mechanism of this regulation has remained unclear. Results: Here, we demonstrate that S-glutathionylation of CBS enhances its activity *2-fold in vitro. Loss of this post-translational modification in the presence of dithiothreitol results in reversal to basal activity. Cys346 was identified as the site for S-glutathionylation by a combination of mass spectrometric, mutagenesis, and activity analyses. To test the physiological relevance of S-glutathionylation-dependent regulation of CBS, HEK293 cells were oxidatively challenged with peroxide, which is known to enhance the trans-sulfuration flux. Under these conditions, CBS glutathionylation levels increased and were correlated with a *3-fold increase in CBS activity. Innovation: Collectively, our results reveal a novel post-translational modification of CBS, that is, glutathionylation, which functions as an allosteric activator under oxidative stress conditions permitting enhanced synthesis of both cysteine and H2S. Conclusions: Our study elucidates a molecular mechanism for increased cysteine and therefore glutathione, synthesis via glutathionylation of CBS. They also demonstrate the potential for increased H2S production under oxidative stress conditions, particularly in tissues where CBS is a major source of H2S. Antioxid. Redox Signal. 22, 350–361.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions.

AIMS Cystathionine β-synthase (CBS) catalyzes the first and rate-limiting step in the two-step trans-sulfuration pathway that converts homocysteine to cysteine. It is also one of three major enzymes responsible for the biogenesis of H2S, a signaling molecule. We have previously demonstrated that CBS is activated in cells challenged by oxidative stress, but the underlying molecular mechanism of ...

متن کامل

Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas

Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation...

متن کامل

Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy.

RATIONALE Cardiac resynchronization therapy (CRT) is an effective clinical treatment for heart failure patients with conduction delay, impaired contraction, and energetics. Our recent studies have revealed that mitochondrial posttranslational modifications (PTM) may contribute to its benefits, motivating the present study of the oxidative regulation of mitochondrial ATP synthase. OBJECTIVES W...

متن کامل

Glutathione S-Transferase Omega 1 Activity Is Sufficient to Suppress Neurodegeneration in a Drosophila Model of Parkinson Disease*

A loss-of-function mutation in the gene parkin causes a common neurodegenerative disease that may be caused by mitochondrial dysfunction. Glutathione S-transferase Omega (GSTO) is involved in cell defense mechanisms, but little is known about the role of GSTO in the progression of Parkinson disease. Here, we report that restoration of Drosophila GSTO1 (DmGSTO1), which is down-regulated in parki...

متن کامل

Hypoxia and Reoxygenation Induce Endothelial Nitric Oxide Synthase Uncoupling in Endothelial Cells through Tetrahydrobiopterin Depletion and S-Glutathionylation

Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016